Program Peningkatan Prestasi Sains \& Matematik 2009
Additional Mathematics Marking Scheme - Paper 2

Solution	Marks	Solution	Marks
$\text { 1. } \begin{aligned} & y=1-2 x \text { atau } x=\frac{1-y}{2} \\ & y^{2}-x^{2}+x y=11 \\ & (1-2 x)^{2}-x^{2}+x(1-2 x)=11 \text { or } \\ & y^{2}-\left(\frac{1-y}{2}\right)^{2}+\left(\frac{1-y}{2}\right) y=11 \\ & y^{2}+4 y-45=0 \\ & x^{2}-3 x-10=0 \\ & (x-5)(x+2)=0 \\ & (y-5)(y+9)=0 \\ & x=5, x=-2 \\ & y=-9, y=5 \end{aligned}$	P1 K1 K1 N1 N1 $\overline{5}$	$\text { 2. a) } \begin{gathered} f(x)=2 x^{2}-h x-k \\ =2\left(x^{2}-\frac{h}{2} x\right)-k \\ =2\left[x^{2}-\frac{h}{2} x+\left(-\frac{h}{4}\right)^{2}-\left(-\frac{h}{4}\right)^{2}\right]-k \\ =2\left(x-\frac{h}{4}\right)^{2}-\frac{h^{2}}{8}-k \\ -1-\frac{h}{4}=0 \text { or }-\frac{(-4)^{2}}{8}-k=13 \\ h=-4 \\ k=-15 \end{gathered}$ b) $\begin{aligned} & f(x) \geq 31 \\ & x^{2}+2 x-8 \geq 0 \\ & x \leq-4, x \geq 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} 1 \\ & \mathrm{~N} 1 \\ & \mathrm{~K} 1 \\ & \mathrm{~N} 1 \\ & \mathrm{~N} 1 \\ & \\ & \mathrm{~K} 1 \\ & \mathrm{~N} 1 \\ & \hline 7 \\ & \hline \end{aligned}$
$\text { a) } \begin{aligned} T_{7} & =560+(7-1) 81.2 \\ & =1047.20 \\ \text { b) } S_{7} & =\frac{560\left[\left(\frac{3}{2}\right)^{7}-1\right]}{\frac{3}{2}-1} \\ & =18016.25 \end{aligned}$ 3. a) c) $\begin{aligned} S_{7} & =\frac{7}{2}[2(560+(7-1) 81.2] \\ & =5625.2 \\ \text { Diff } & =18016.25-5625.2 \\ & =12391.05 \end{aligned}$	K 1 N 1 K 1 N 1 K 1 K 1 N 1 7	4. a) LHS: $\operatorname{cosec} x-\cos ^{2} x \operatorname{cosec} x$ $\begin{aligned} & =\frac{1}{\sin x}-\frac{\cos ^{2} x}{\sin x} \\ & =\frac{\sin ^{2} x}{\sin x} \end{aligned}$ Shape of graph $\sin x$ $\operatorname{Min}=-1, \operatorname{Max}=1$ Correct magnitud within $\begin{aligned} 0 \leq x & \leq 2 \pi \\ y & =\frac{3 x}{5 \pi} \end{aligned}$ Number of solution = 3	K1 N1 K1 P1 P1 P1 N1 N1 $\overline{8}$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
9 a) \(\frac{O C}{\sin 30^{\circ}}=\frac{12}{\sin 75^{\circ}}\)
\[
\begin{aligned}
\& 30^{\circ} \sin 75^{\circ} \\
\& O C=\frac{12}{\sin 75^{\circ} x \sin 30^{\circ}} \\
\&=6.2117 \mathrm{~cm} \\
\& \cos 75^{\circ}=\frac{O M}{12} \\
\& O C=2\left(12 \times \cos 75^{\circ}\right)=6.2117
\end{aligned}
\] \\
b)
\[
\begin{aligned}
\& S_{A C}=12\left(60 \times \frac{\pi}{180}\right) \\
\&=12.568 \mathrm{~cm} \\
\& S_{A B C}=6.2117 \times\left(210 \times \frac{\pi}{180^{0}}\right) \\
\&=22.7700 \mathrm{~cm} \\
\& \text { Perimeter }=12.568+22.7700 \\
\&=35.338 \mathrm{~cm}
\end{aligned}
\] \\
c) Area of sector \(O A B C\)
\[
\begin{aligned}
\& =\frac{1}{2}(6.2117)^{2}\left(210 \times \frac{\pi}{180^{\circ}}\right) \\
\& =70.7203 \mathrm{~cm}^{2} . \\
\& \angle O P C=30^{\circ}
\end{aligned}
\] \\
Area of segment \(A O\)
\[
\begin{aligned}
\& =\frac{1}{2}(12)^{2}\left(\frac{30^{\circ}}{180^{\circ}} \pi-\sin 30^{\circ}\right) \\
\& =1.704 \mathrm{~cm}
\end{aligned}
\] \\
Area of shaded region
\[
=70.7203-2(1.704)
\]
\[
=67.3123 \mathrm{~cm}^{2} .
\]
\end{tabular} \& \begin{tabular}{l}
K1 \\
N1 \\
K1 \\
K1 \\
N1 \\
K 1 \\
P1 \\
K1 \\
K1 \\
N1 \\
\(\overline{10}\)
\end{tabular} \& \begin{tabular}{l}
10
\[
\begin{array}{r}
\text { (a) } P \text { is the midpoint of } A C \\
P\left[\left(\frac{x+2}{2}\right),\left(\frac{y-5}{2}\right)\right]=(0,-1) \\
P\left[\frac{1(6)+3 x}{1+3}, \frac{1(2)+3 y}{1+3}\right]=(0,-1) \\
D(-2,-2)
\end{array}
\] \\
b) \(m=\frac{-2-(-1)}{-2-0}=\frac{1}{2}\)
\[
\frac{y-(-2)}{x-(-2)}=\frac{1}{2}
\]
\[
2 y=x-2
\] \\
c) \(\operatorname{Midpoint}\left(0,-\frac{7}{2}\right)\)
\[
\begin{aligned}
m \& =-\frac{3}{4}, m=\frac{4}{3} \\
y \& =\frac{4}{3} x--\frac{7}{2}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{c}
K 1 \\
N 1 \\
K 1 \\
N 1 \\
K 1 \\
K 1 \\
N 1 \\
P 1 \\
K 1 \\
Nl \\
\hline 10
\end{tabular} \\
\hline \begin{tabular}{l}
11 a) i) \(p=\frac{1}{6}, q=\frac{5}{6}\)
\[
\begin{aligned}
P(\mathrm{X}=2) \& ={ }^{10} C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8} \\
\& =0.2907
\end{aligned}
\]
\[
\text { ii) } \begin{aligned}
\& P(X \leq 2)= \\
= \& P(X=0)+P(X=1)+P(X=2) \\
= \& \left(\frac{5}{6}\right)^{10}+{ }^{10} C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{9}+0.2907 \\
= \& 0.7752
\end{aligned}
\] \\
b) \(\mathrm{X} \sim \mathrm{N}\left(45,25^{2}\right)\)
\end{tabular} \& \begin{tabular}{l}
K1 \\
N 1 \\
K1K1 \\
N1
\end{tabular} \& \begin{tabular}{l}
12a) when \(t=0\), \\
b)
\[
\begin{array}{r}
s=5(3)^{2}-2(3)^{3}+p=0 \\
p=9 \\
v=\frac{d s}{d t}=10 t-6 t^{2}
\end{array}
\]
\[
\begin{aligned}
\& v=\frac{d s}{d t}=10 t-6 t^{2} \\
\& a=\frac{d v}{d t}=10-12 t=0 \\
\& t=\frac{5}{6} \\
\& v_{\max }=10\left(\frac{5}{6}\right)-6\left(\frac{5}{6}\right)^{2} \\
\& =4 \frac{1}{6}
\end{aligned}
\]
\end{tabular} \& K 1
N 1
K 1
K 1

K 1
N 1 \\
\hline
\end{tabular}

Graph for Question 15

Question 8
保

