SEKOLAH-SEKOLAH MENENGAH ZON A KUCHING

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009

MATEMATIK TAMBAHAN

Kertas 2

Dua jam tiga puluh minit

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU

- 1. This question paper consists of three sections : Section A, Section B and Section C.
- 2. Answer all question in Section A, four questions from Section B and two questions from Section C.
- 3. *Give only* **one** *answer / solution to each question.*.
- 4. Show your working. It may help you to get marks.
- 5. The diagram in the questions provided are not drawn to scale unless stated.
- 6. The marks allocated for each question and sub-part of a question are shown in brackets..
- 7. A list of formulae is provided on pages 2 to 3.
- 8. A booklet of four-figure mathematical tables is provided.
- 9. You may use a non-programmable scientific calculator.

Kertas soalan ini mengandungi 11 halaman bercetak

The following formulae may be helpful in answering the questions. The symbols given are the ones commonly used.

		ALGEBRA	
1	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	8	$\log_a b = \frac{\log_c b}{\log_c a}$
2	$a^m \times a^n = a^{m+n}$	9	$T_n = a + (n-1)d$
3	$a^m \div a^n = a^{m-n}$	10	$S_n = \frac{n}{2} [2a + (n-1)d]$
4	$(a^m)^n = a^{mn}$		$T_n = ar^{n-1}$
5	$\log_a mn = \log_a m + \log_a n$	12	$S_n = \frac{a(r^n - 1)}{r - 1} = \frac{a(1 - r^n)}{1 - r} , \ (r \neq 1)$
6	$\log_a \frac{m}{m} = \log_a m - \log_a n$		
7	$\log_a m^n = n \log_a m$	13	$S_{\infty} = \frac{a}{1-r} , r < 1$

CALCULUS

1 $y = uv$, $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	4 Area under a curve b
2 $y = \frac{u}{v}, \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2},$	$= \int_{a}^{b} y dx$ or
$3 \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$= \int_{a}^{b} x dy$ 5 Volume generated
	$=\int_{a}^{b}\pi y^{2} dx$ or
	$= \int_{a}^{b} \pi x^2 dy$

GEOM ETRY

- 1 Distance = $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ 2 Midpoint $(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 3 $|r| = \sqrt{x^2 + y^2}$ 4 $\hat{r} = \frac{xi + yj}{\sqrt{x^2 + y^2}}$
- 5 A point dividing a segment of a line

$$(x, y) = \left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}\right)$$

6. Area of triangle =

$$\frac{1}{2} |(x_1y_2 + x_2y_3 + x_3y_1) - (x_2y_1 + x_3y_2 + x_1y_3)|$$

STATISTICS

$$1 \qquad \overline{x} = \frac{\sum x}{N}$$

2
$$\overline{x} = \frac{\sum fx}{\sum f}$$

3 $\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{N}} = \sqrt{\frac{\sum x^2}{N} - \overline{x}^2}$

4
$$\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{\sum f}} = \sqrt{\frac{\sum fx^2}{\sum f} - \overline{x}^2}$$

$$5 \quad m = L + \left\lfloor \frac{\frac{1}{2}N - F}{f_m} \right\rfloor C$$

$$6 \quad I = \frac{Q_1}{Q_0} \times 100$$

7
$$\overline{I} = \frac{\sum w_{1}I_{1}}{\sum w_{1}}$$
8
$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$
9
$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$
10
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
11
$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}, p + q = 1$$
12 Mean $\mu = np$
13
$$\sigma = \sqrt{npq}$$
14
$$z = \frac{x - \mu}{\sigma}$$

TRIGONOMETRY

- 1 Arc length, $s = r\theta$
- 2 Area of sector, $A = \frac{1}{2}r^2\theta$
- $3 \quad \sin^2 A + \cos^2 A = 1$
- $4 \quad \sec^2 A = 1 + \tan^2 A$
- 5 $\operatorname{cosec}^2 A = 1 + \cot^2 A$
- 6 $\sin 2A = 2 \sin A \cos A$
- 7 $\cos 2A = \cos^2 A \sin^2 A$ = $2 \cos^2 A - 1$ = $1 - 2 \sin^2 A$

8
$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

9 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

10 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

11
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

12
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

13
$$a^2 = b^2 + c^2 - 2bc \cos A$$

14 Area of triangle =
$$\frac{1}{2}ab\sin C$$

SECTION A

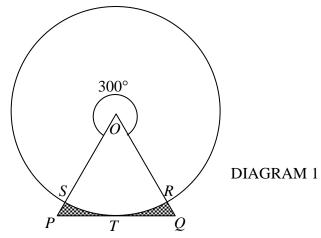
[40 marks]

Answer all questions in this section .

1 Solve the simultaneous equations x - 2y + 6 = 0 and $x^2 + xy - 20 = 0$. Give your answer correct to 3 decimal places.

[5 marks]

2 Diagram 1 shows a circle with centre *O*.



PTQ is a tangent to the circle at *T* and PQ = OQ = 20 cm. Calculate

- (*a*) the length of the arc *STR*, [4 *marks*]
- (*b*) the area of the shaded region.

[4 marks]

3 Table 1 shows the frequency distribution of scores of a group of players in a game.

Score	0-4	5-9	10-14	15-19	20 - 24	25 - 29	30-34
Number of players	2	3	10	20	W	6	2

TABLE 1

It is given that the median of the distribution is 17.

- (a) Calculate the value of w. [3 marks]
- (b) Hence, calculate the variance of the distribution. [4 marks]

SULIT

SULIT

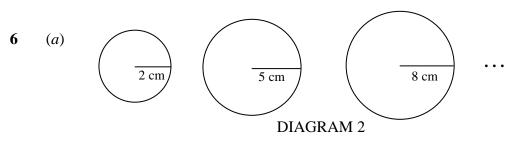
[3 marks]

4 (a) If the volume of a cube decreases from 125 cm^3 to 124.4 cm³, find the small change in the sides of the cube.

(b) Given that
$$f(x) = \frac{3x+4}{3-x^2}$$
, find the value of $f'(2)$. [3 marks]

5 (a) Prove that
$$\sin 2x = 2 \sin^2 x \cot x$$
. [2 marks]

(b) Sketch the graph of $y = |2\sin 2x|$ for $0 \le x \le \pi$. Hence, using the same axes, sketch a suitable straight line to find the number of solutions of the equation $|2\sin 2x|$ = $\frac{2x}{\pi}$ for $0 \le x \le \pi$. State the number of solutions. [6 marks]

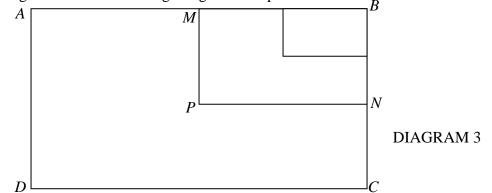


A piece of wire is cut into 15 parts which are bent to form circles as shown in Diagram 2.

The radius of each circle increases by 3 cm consecutively. Calculate

(i) the radius of the last circle, [2 marks]

(ii) the area of the last circle.



The first rectangle is *ABCD* and followed by *MBNP* and so on. The length and width of the next rectangle is half of the length and width of the previous rectangle. Given that AB = 30 cm and BC = 20 cm. Find the perimeter of the seventh rectangle.

[3 marks]

[1 *mark*]

5

<u>SULIT</u>

SECTION B

[40 marks]

Answer four questions from this section.

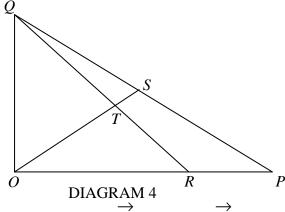
7 Use graph paper to answer this question.

Table 2 shows the values of two variables x and y which are related by $y = pq^{x+2}$, where p and q are constants.

x	1	2	3	4	5	6
у	25.6	125.9	640	3163	15849	63096
TABLE 2						

(a) Convert
$$y = pq^{x+2}$$
 to a linear form of $Y = mX + c$. [2 marks]

- (b) Plot $\log_{10} y$ against (x + 2) by using a scale of 2 cm to 1 unit on the *Y*-axis and 2 cm to 1 unit on the *X*-axis. Hence, draw the line of best fit. [4 marks]
- (c) From the graph in (b), find the value of p and of q. [4 marks]
- 8 Diagram 4 shows a triangle OPQ. The point *R* lies on OP and the point *S* lies on *PQ*. The straight line QR intersects the straight line OS at point *T*.



Given OP : OR = 4 : 3, PQ : PS = 2 : 1, $\overrightarrow{OP} = 12x$ and $\overrightarrow{OQ} = 9y$.

- (a) Express, in terms of \underline{x} and / or \underline{y} ,
 - (i) \overrightarrow{QR} , (ii) \overrightarrow{OS} .

[3 marks]

(b) If $\overrightarrow{OT} = h \overrightarrow{OS}$ and $\overrightarrow{QT} = k \overrightarrow{QR}$, where *h* and *k* are constants, find the values of *h* and *k*. [5 marks]

(c) Given that $|\underline{x}| = 3$ units, $|\underline{y}| = 5$ units and $\angle POQ = 90^{\circ}$, find $|\overrightarrow{PQ}|$. [2 marks]

3472/2

© ZON A KUCHING 2009

SULIT

- 9 (a) In a certain area, 30% of the trees are rubber trees.
 - (i) If 8 trees in the area are chosen at random, find the probability that at least two of the trees are rubber trees.

7

(ii) If the variance of the rubber trees is 315, find the number of rubber trees in the area.

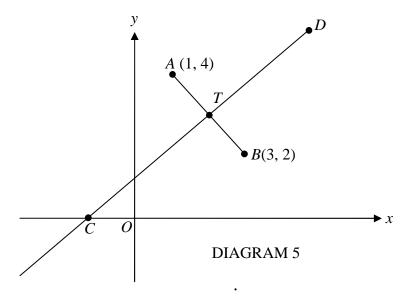
[5 marks]

(b) The masses of the children in the Primary One in the school have a normal distribution with mean 33.5 kg and variance 25 kg^2 . 150 of the children have masses between 30 kg and 36.5 kg. Calculate the total number of children in Primary One in that school.

[5 marks]

10 Solution by scale drawing is not accepted.

In Diagram 5, point *T* lies on the perpendicular bisector of *AB*.



(*a*) Find the equation of straight line *AB*. [2 marks]

(b) A point P moves such that PA = 2AB. Find the equation of locus of P.

[3 marks]

(c) Locus of P intersects the x-axis at points Y and Z. State the coordinates of Y and Z. [3 marks]

(d) Find the x-intercept of CD. [2 marks]

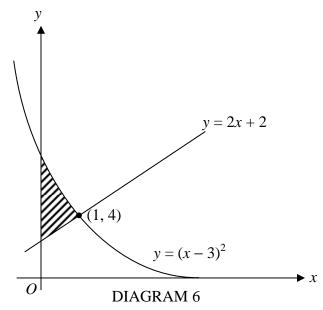
SULIT

SULIT

11 (a) Given that a curve has a gradient function $px^2 + x$ such that p is a constant. y = 6 - 2x is the equation of tangent to the curve at the point (2, q). Find the value of p and of q.

[3 marks]

(b) Diagram 6 shows the curve $y = (x - 3)^2$ and the straight line y = 2x + 2 intersect at point (1, 4).



Calculate

(i) the area of the shaded region,

[4 marks]

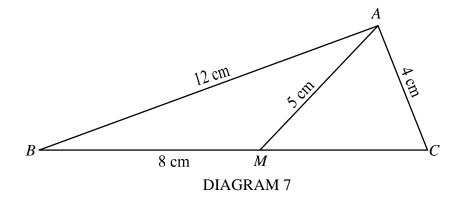
(ii) the volume of revolution, in terms of π , when the region bounded by the curve, the *x*-axis, the *y*-axis and the straight line x = 2 is revolved through 360° about the *x*-axis. [3 marks]

SECTION C

[20 *marks*]

Answer two questions from this section.

- 12 A particle moves along a straight line and passes through a fixed point *O*. Its velocity, $v \text{ ms}^{-1}$, is given by $v = t^2 6t + 5$, where *t* is the time, in seconds, after passing through *O*. (Assume motion to the right is positive). Find
 - (a) the initial velocity, in ms^{-1} , [1 mark]
 - (b) the minimum velocity, in ms^{-1} , [3 marks]
 - (c) the range of values of t at which the particles moves to the left, [2 marks]
 - (d) the total distance, in m, travelled by the particle in the first 5 seconds. [4 marks]
- **13** In Diagram 7, *ABC* is a triangle. *BMC* and *AM* are straight lines.



- (a) Calculate
 - (i) $\angle AMB$,
 - (ii) the area, in cm^2 , of triangle *ABC*. [7 marks]
- (b) A new triangle A'B'M' is formed with A'B' = AB, B'M' = BM and $\angle B'A'M' = \angle BAM$, find the length of A'M'. [3 marks]

SULIT

14 Use the graph paper provided to answer this question.

A factory produces two types of school bags M and N using two types of machines A and B. Given that machine A requires 20 minutes to produce a bag M and 30 minutes to produce a bag N while machine B requires 25 minutes to produce a bag M and 40 minutes to produce a bag N. The machines produce x units of M and y units of N in a particular day according to the following conditions.

- I : Machine *A* is operated for not more than 8 hours.
- II : Machine **B** is operated for at least 4 hours.
- III : The number of units of bag M produced is not more than twice the number of units of bag N.
- (a) Write the three inequalities for the above conditions. [3 marks]
- (b) Using a scale of 2 cm to 2 units for both axes, construct and shade the region **R** which satisfies all the above conditions. [3 marks]
- (c) Use the graph constructed in **14** (b), to find
 - (i) the maximum number of units of bag M that can be produced if the factory produces 12 units of bag N.
 - (ii) the maximum profit obtained if the profit from one unit of bag M and bag N are RM 18 and RM 20 respectively.

[4 marks]

15 Table 3 shows the price indices and percentage of usage of four components, *P*, *Q*, *R* and *S*, which are the number of parts in the making of an electronic device.

11

Item	Price index for the year 2000 based on the year 1997	Percentage of usage (%)		
Р	125	20		
Q	140	10		
R	X	30		
S	110	40		

TABLE 3

- (*a*) Calculate
 - (i) the price of Q in the year 1997 if its price in the year 2000 is RM 50.40,
 - (ii) the price index of *P* in the year 2000 based on the year 1994 if its price index in the year 1997 based on the year 1994 is 120.

[5 marks]

- (b) The composite index number for the cost of production in the year 2000 based on the year 1997 is 122. Calculate
 - (i) the value of x,
 - (ii) the price of an electronic device in the year 1997 if the corresponding price in the year 2000 was RM 288.

[5 marks]

END OF QUESTION PAPER